Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33.399
Filtrar
1.
Sci Rep ; 14(1): 7813, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38565862

RESUMO

Steatotic liver disease (SLD) is a burgeoning health problem predominantly associated with excessive alcohol consumption, which causes alcohol-related liver disease (ALD), and high caloric intake, which results in metabolic dysfunction-associated SLD (MASLD). The pathogenesis of ALD and MASLD, which can progress from steatohepatitis to more severe conditions such as liver fibrosis, cirrhosis, and hepatocellular carcinoma, is complicated by several factors. Recently, extracellular ATP and adenosine (Ado), as damage-associated molecular patterns, were reported to promote inflammation and liver fibrosis, contributing to SLD pathogenesis. Here, we explored the in vivo dynamics of hepatic extracellular ATP and Ado during the progression of steatohepatitis using a genetically encoded GPCR-activation-based sensor (GRAB) in zebrafish models. We established hepatocyte-specific GRABATP and GRABAdo in zebrafish and investigated the changes in in vivo hepatic extracellular ATP and Ado levels under ALD or MASLD conditions. Disease-specific changes in hepatocyte extracellular ATP and Ado levels were observed, clearly indicating a correlation between hepatocyte extracellular ATP/Ado dynamics and disease progression. Furthermore, clodronate, a vesicular nucleotide transporter inhibitor, alleviated the MASLD phenotype by reducing the hepatic extracellular ATP and Ado content. These findings provide deep insights into extracellular ATP/Ado dynamics in disease progression, suggesting therapeutic potential for ALD and MASLD.


Assuntos
Fígado Gorduroso , Neoplasias Hepáticas , Doenças Metabólicas , Perciformes , Animais , Peixe-Zebra , Adenosina , Cirrose Hepática , Progressão da Doença , Trifosfato de Adenosina
2.
Einstein (Sao Paulo) ; 22: eRC0522, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38597464

RESUMO

Adenosine is an antiarrhythmic drug that slows conduction through the atrioventricular node and acts as a coronary blood vessel dilator. This case report highlights two unusual life-threatening events following the use of adenosine to revert supraventricular tachycardia in a structurally normal heart: non-sustained polymorphic ventricular tachycardia and myocardial infarction. A 46-year-old woman presented to the emergency department with a two-hour history of palpitations and was diagnosed with supraventricular tachycardia. Vagal maneuvers were ineffective, and after intravenous adenosine administration, the patient presented with chest pain and hypotension. The rhythm degenerated into non-sustained polymorphic ventricular tachycardia and spontaneously reverted to sinus rhythm with ST elevation in lead aVR and ST depression in the inferior and anterolateral leads. The patient spontaneously recovered within a few minutes. Despite successful arrhythmia reversal, the patient was admitted to the intensive care unit because of an infarction without obstructive atherosclerosis. This report aims to alert emergency physicians about the potential complications associated with supraventricular tachycardia and its reversal with adenosine.


Assuntos
Infarto do Miocárdio , Taquicardia Supraventricular , Torsades de Pointes , Feminino , Humanos , Pessoa de Meia-Idade , Adenosina/efeitos adversos , Torsades de Pointes/tratamento farmacológico , Eletrocardiografia , Taquicardia Supraventricular/tratamento farmacológico , Arritmias Cardíacas , Infarto do Miocárdio/complicações , Infarto do Miocárdio/tratamento farmacológico
3.
Sci Rep ; 14(1): 8180, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589431

RESUMO

N6-methyladenosine (6 mA) is the most common internal modification in eukaryotic mRNA. Mass spectrometry and site-directed mutagenesis, two of the most common conventional approaches, have been shown to be laborious and challenging. In recent years, there has been a rising interest in analyzing RNA sequences to systematically investigate mutated locations. Using novel methods for feature development, the current work aimed to identify 6 mA locations in RNA sequences. Following the generation of these novel features, they were used to train an ensemble of models using methods such as stacking, boosting, and bagging. The trained ensemble models were assessed using an independent test set and k-fold cross validation. When compared to baseline predictors, the suggested model performed better and showed improved ratings across the board for key measures of accuracy.


Assuntos
Adenosina , RNA , RNA/genética , RNA Mensageiro , Adenosina/genética , Projetos de Pesquisa
4.
Cancer Res Commun ; 4(4): 1004-1015, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38592450

RESUMO

Asbestos and BAP1 germline mutations are risk factors for malignant mesothelioma (MM). While it is well accepted that amphibole asbestos is carcinogenic, the role of serpentine (chrysotile) asbestos in MM has been debated. To address this controversy, we assessed whether minimal exposure to chrysotile could significantly increase the incidence and rate of MM onset in germline Bap1-mutant mice. With either crocidolite or chrysotile, and at each dose tested, MMs occurred at a significantly higher rate and earlier onset time in Bap1-mutant mice than in wild-type littermates. To explore the role of gene-environment interactions in MMs from Bap1-mutant mice, we investigated proinflammatory and protumorigenic factors and the tumor immune microenvironment (TIME). IHC and immunofluorescence staining showed an increased number of macrophages in granulomatous lesions and MMs. The relative number of CD163-positive (CD163+) M2 macrophages in chrysotile-induced MMs was consistently greater than in crocidolite-induced MMs, suggesting that chrysotile induces a more profound immunosuppressive response that creates favorable conditions for evading immune surveillance. MMs from Bap1-mutant mice showed upregulation of CD39/CD73-adenosine and C-C motif chemokine ligand 2 (Ccl2)/C-C motif chemokine receptor 2 (Ccr2) pathways, which together with upregulation of IL6 and IL10, promoted an immunosuppressive TIME, partly by attracting M2 macrophages. Interrogation of published human MM RNA sequencing (RNA-seq) data implicated these same immunosuppressive pathways and connections with CD163+ M2 macrophages. These findings indicate that increased M2 macrophages, along with upregulated CD39/CD73-adenosine and Ccl2/Ccr2 pathways, contribute to an immunosuppressive TIME in chrysotile-induced MMs of Bap1-mutant mice, suggesting that immunotherapeutic strategies targeting protumorigenic immune pathways could be beneficial in human BAP1 mutation carriers who develop MM. SIGNIFICANCE: We show that germline Bap1-mutant mice have enhanced susceptibility to MM upon minimal exposure to chrysotile asbestos, not only amphibole fibers. Chrysotile induced a more profound immune tumor response than crocidolite in Bap1-mutant mice by upregulating CD39/CD73-adenosine and Ccl2/Ccr2 pathways and recruiting more M2 macrophages, which together contributed to an immunosuppressive tumor microenvironment. Interrogation of human MM RNA-seq data revealed interconnected immunosuppressive pathways consistent with our mouse findings.


Assuntos
Mesotelioma Maligno , Mesotelioma , Neoplasias Mesoteliais , Humanos , Animais , Camundongos , Asbestos Serpentinas , Amiantos Anfibólicos , Asbesto Crocidolita/toxicidade , Microambiente Tumoral/genética , Mesotelioma/induzido quimicamente , Adenosina , Imunossupressores , Células Germinativas
5.
Arch Microbiol ; 206(5): 225, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642078

RESUMO

Cordyceps militaris has been extensively cultivated as a model cordyceps species for commercial purposes. Nevertheless, the problems related to strain degeneration and breeding technologies remain unresolved. This study assessed the physiology and fertility traits of six C. militaris strains with distinct origins and characteristics, focusing on single mating-type strains. The results demonstrated that the three identified strains (CMDB01, CMSY01, and CMJB02) were single mating-type possessing only one mating-type gene (MAT1-1). In contrast, the other three strains (CMXF07, CMXF09, and CMMS05) were the dual mating type. The MAT1-1 strains sourced from CMDB01, CMSY01, and CMJB02 consistently produced sporocarps but failed to generate ascospores. However, when paired with MAT1-2 strains, the MAT1-1 strains with slender fruiting bodies and normal morphology were fertile. The hyphal growth rate of single mating-type strains (CMDB01, CMSY01, and CMJB02) typically surpassed that of dual mating-type strains (CMXF07, CMXF09, and CMMS05). The growth rates of MAT1-2 and MAT1-1 strains were proportional to their ratios, such that a single mating-type strain with a higher ratio exhibited an increased growth rate. As C. militaris matured, the adenosine content decreased. In summary, the C. militaris strains that consistently produce sporocarps and have a single mating type are highly promising for production and breeding.


Assuntos
Cordyceps , Cordyceps/genética , Genes Fúngicos Tipo Acasalamento , Melhoramento Vegetal , Adenosina , Esporos Fúngicos/genética
6.
Cancer Immunol Immunother ; 73(6): 108, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642131

RESUMO

Tumor-associated macrophages (TAMs) are abundant in tumors and interact with tumor cells, leading to the formation of an immunosuppressive microenvironment and tumor progression. Although many studies have explored the mechanisms underlying TAM polarization and its immunosuppressive functions, understanding of its progression remains limited. TAMs promote tumor progression by secreting cytokines, which subsequently recruit immunosuppressive cells to suppress the antitumor immunity. In this study, we established an in vitro model of macrophage and non-small cell lung cancer (NSCLC) cell co-culture to explore the mechanisms of cell-cell crosstalk. We observed that in NSCLC, the C-X-C motif chemokine ligand 5 (CXCL5) was upregulated in macrophages because of the stimulation of A2AR by adenosine. Adenosine was catalyzed by CD39 and CD73 in macrophages and tumor cells, respectively. Nuclear factor kappa B (NFκB) mediated the A2AR stimulation of CXCL5 upregulation in macrophages. Additionally, CXCL5 stimulated NETosis in neutrophils. Neutrophil extracellular traps (NETs)-treated CD8+ T cells exhibited upregulation of exhaustion-related and cytosolic DNA sensing pathways and downregulation of effector-related genes. However, A2AR inhibition significantly downregulated CXCL5 expression and reduced neutrophil infiltration, consequently alleviating CD8+ T cell dysfunction. Our findings suggest a complex interaction between tumor and immune cells and its potential as therapeutic target.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Linfócitos T CD8-Positivos , Regulação para Cima , Macrófagos , Adenosina/metabolismo , Microambiente Tumoral , Quimiocina CXCL5/metabolismo
7.
Mol Genet Genomics ; 299(1): 46, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642133

RESUMO

Adenosine-to-inosine (A-to-I) RNA editing, resembling A-to-G mutation, confers adaptiveness by increasing proteomic diversity in a temporal-spatial manner. This evolutionary theory named "proteomic diversifying hypothesis" has only partially been tested in very few organisms like Drosophila melanogaster, mainly by observing the positive selection on nonsynonymous editing events. To find additional genome-wide evidences supporting this interesting assumption, we retrieved the genomes of four Drosophila species and collected 20 deep-sequenced transcriptomes of different developmental stages and neuron populations of D. melanogaster. We systematically profiled the RNA editomes in these samples and performed meticulous comparative genomic analyses. Further evidences were found to support the diversifying hypothesis. (1) None of the nonsynonymous editing sites in D. melanogaster had ancestral G-alleles, while the silent editing sites had an unignorable fraction of ancestral G-alleles; (2) Only very few nonsynonymous editing sites in D. melanogaster had corresponding G-alleles derived in the genomes of sibling species, and the fraction of such situation was significantly lower than that of silent editing sites; (3) The few nonsynonymous editing with corresponding G-alleles had significantly more variable editing levels (across samples) than other nonsynonymous editing sites in D. melanogaster. The proteomic diversifying nature of RNA editing in Drosophila excludes the restorative role which favors an ancestral G-allele. The few fixed G-alleles in sibling species might facilitate the adaptation to particular environment and the corresponding nonsynonymous editing in D. melanogaster would introduce stronger advantage of flexible proteomic diversification. With multi-Omics data, our study consolidates the nature of evolutionary significance of A-to-I RNA editing sites in model insects.


Assuntos
Drosophila melanogaster , RNA , Animais , RNA/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteômica , Edição de RNA/genética , Adenosina/genética , Adenosina/metabolismo , Inosina/genética , Inosina/metabolismo , Genômica , Drosophila/genética
8.
Lancet ; 403(10436): 1543-1553, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38604209

RESUMO

BACKGROUND: The coronary sinus reducer (CSR) is proposed to reduce angina in patients with stable coronary artery disease by improving myocardial perfusion. We aimed to measure its efficacy, compared with placebo, on myocardial ischaemia reduction and symptom improvement. METHODS: ORBITA-COSMIC was a double-blind, randomised, placebo-controlled trial conducted at six UK hospitals. Patients aged 18 years or older with angina, stable coronary artery disease, ischaemia, and no further options for treatment were eligible. All patients completed a quantitative adenosine-stress perfusion cardiac magnetic resonance scan, symptom and quality-of-life questionnaires, and a treadmill exercise test before entering a 2-week symptom assessment phase, in which patients reported their angina symptoms using a smartphone application (ORBITA-app). Patients were randomly assigned (1:1) to receive either CSR or placebo. Both participants and investigators were masked to study assignment. After the CSR implantation or placebo procedure, patients entered a 6-month blinded follow-up phase in which they reported their daily symptoms in the ORBITA-app. At 6 months, all assessments were repeated. The primary outcome was myocardial blood flow in segments designated ischaemic at enrolment during the adenosine-stress perfusion cardiac magnetic resonance scan. The primary symptom outcome was the number of daily angina episodes. Analysis was done by intention-to-treat and followed Bayesian methodology. The study is registered with ClinicalTrials.gov, NCT04892537, and completed. FINDINGS: Between May 26, 2021, and June 28, 2023, 61 patients were enrolled, of whom 51 (44 [86%] male; seven [14%] female) were randomly assigned to either the CSR group (n=25) or the placebo group (n=26). Of these, 50 patients were included in the intention-to-treat analysis (24 in the CSR group and 26 in the placebo group). 454 (57%) of 800 imaged cardiac segments were ischaemic at enrolment, with a median stress myocardial blood flow of 1·08 mL/min per g (IQR 0·77-1·41). Myocardial blood flow in ischaemic segments did not improve with CSR compared with placebo (difference 0·06 mL/min per g [95% CrI -0·09 to 0·20]; Pr(Benefit)=78·8%). The number of daily angina episodes was reduced with CSR compared with placebo (OR 1·40 [95% CrI 1·08 to 1·83]; Pr(Benefit)=99·4%). There were two CSR embolisation events in the CSR group, and no acute coronary syndrome events or deaths in either group. INTERPRETATION: ORBITA-COSMIC found no evidence that the CSR improved transmural myocardial perfusion, but the CSR did improve angina compared with placebo. These findings provide evidence for the use of CSR as a further antianginal option for patients with stable coronary artery disease. FUNDING: Medical Research Council, Imperial College Healthcare Charity, National Institute for Health and Care Research Imperial Biomedical Research Centre, St Mary's Coronary Flow Trust, British Heart Foundation.


Assuntos
Angina Estável , Doença da Artéria Coronariana , Seio Coronário , Intervenção Coronária Percutânea , Humanos , Masculino , Feminino , Doença da Artéria Coronariana/terapia , Angina Estável/tratamento farmacológico , Seio Coronário/diagnóstico por imagem , Teorema de Bayes , Resultado do Tratamento , Intervenção Coronária Percutânea/efeitos adversos , Método Duplo-Cego , Isquemia , Adenosina
9.
BMC Nephrol ; 25(1): 119, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570749

RESUMO

BACKGROUND: Lupus nephritis (LN) is the most common and severe clinical manifestation of systemic lupus erythematosus (SLE). N6-methyladenosine (m6A) is a reversible RNA modification and has been implicated in various biological processes. However, the roles of m6A regulators in LN are not fully demonstrated. METHODS: We downloaded the kidney tissue transcriptome dataset of LN patients and normal controls from the GEO database and extracted the expression levels of m6A regulators. We constructed and compared Random Forest (RF) and Support Vector Machine (SVM) models, and subsequently selected featured genes to develop nomogram models. The m6A subtypes were identified based on significantly differentially expressed m6A regulators, and the m6A gene subtypes were identified based on m6A-associated differential genes, and the two m6A modification patterns were comprehensively evaluated. RESULTS: We obtained the GSE32591 and GSE112943 datasets from the GEO database, including 78 LN samples and 36 normal control samples. We extracted the expression levels of 20 m6A regulators. By RF analysis we identified 7 characteristic m6A regulators and constructed nomogramh models with these 7 genes. We identified two m6A subtypes based on these seven important m6A regulators, and the immune cell infiltration levels of the two subtype clusters were significantly different. We identified two more m6A gene subtypes based on m6A-associated DEGs. We calculated the m6A scores using the principal component analysis (PCA) algorithm and found that the m6A scores of m6A cluster A and gene cluster A were lower than those of m6A cluster B and gene cluster B. In addition, we found that the levels of inflammatory factors were also significantly different between m6A clusters and gene clusters. CONCLUSION: This study confirms that m6A regulators are involved in the LN process through different modes of action and provide new diagnostic and therapeutic targets for LN.


Assuntos
Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Humanos , Nefrite Lúpica/genética , Adenina , Adenosina
10.
Anal Chim Acta ; 1302: 342474, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38580403

RESUMO

BACKGROUND: N6-methyladenosine (m6A) is a common modification in RNA, crucial for various cellular functions and associated with human diseases. Quantification of m6A at single-base resolution is of great significance for exploring its biological roles and related disease research. However, existing analysis techniques, such as polymerase chain reaction (PCR) or loop-mediated isothermal amplification (LAMP), face challenges like the requirement for thermal cycling or intricate primer design. Therefore, it is urgent to establish a simple, non-thermal cycling and highly sensitive assay for m6A. RESULTS: Leveraging the inhibitory effect of m6A on primer elongation and uncomplicated feature of the isothermal exponential amplification reaction (IEXPAR), we have developed an extension-based IEXPAR (E-IEXPAR). This approach requires just a single extension primer and one template, simplifying the design process in comparison to the more complex primer requirements of the LAMP methods. The reactions are conducted at constant temperatures, therby elimiating the use of thermal cycling that needed in PCR methods. By combining IEXPAR with an extension reaction, E-IEXPAR can identify m6A in RNA concentrations as low as 4 fM. We have also introduced a new analytical model to process E-IEXPAR results, which can aid to minimize the impact of unmodified adenine (A) on m6A measurements, enabling accurate m6A quantification in small mixed samples and cellular RNA specimens. SIGNIFICANCE AND NOVELTY: E-IEXPAR streamlines m6A detection by eliminating the need for intricate primer design and thermal cycling, which are common in current analytical methods. Its utilization of an extension reaction for the initial identification of m6A, coupled with a novel calculation model tailored to E-IEXPAR outcomes, ensures accurate m6A selectivity in mixed samples. As a result, E-IEXPAR offers a reliable, straightforward, and potentially economical approach for specifically assaying m6A in both biological function studies and clinical research.


Assuntos
Adenosina/análogos & derivados , Técnicas de Amplificação de Ácido Nucleico , RNA , Humanos , Primers do DNA/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Temperatura , Sensibilidade e Especificidade
11.
Sci Rep ; 14(1): 7994, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580687

RESUMO

Cordyceps militaris (L.) Link (C. militaris) contains various beneficial substances, including polysaccharides (galactomannan), nucleotides (adenosine and cordycepin), cordycepic acid, amino acids, and sterols (ergosterol and beta-sitosterol). It also contains other essential nutrients, such as protein, vitamins (E, K, B1, B2, and B12), and minerals (potassium, sodium, calcium, magnesium, iron, zinc, and selenium). Due to the numerous health benefits of supplements and products containing C. militaris extract, their popularity has increased. However, the immunostimulant effect of C. militaris remains unclear. Therefore, this study developed a functional beverage from the submerged fermentation of C. militaris (FCM) and aimed to investigate the potential of FCM in healthy male and female volunteers in Phayao Province, Thailand. This study provides essential information for the development of healthy drink products. Healthy men and women were provided either FCM containing 2.85 mg of cordycepin or placebo for 8 weeks (n = 10 for each gender). The immune cell markers, immunoglobulins, and safety parameters were assessed initially at baseline and at 4 and 8 weeks. The NK cell activity markedly increased in the male FCM group from baseline (p = 0.049) to 4 weeks after receiving FCM. Compared with those in the placebo group, the NK activity in women who received FCM for 8 weeks significantly increased (p = 0.023) from baseline. Within-group analysis revealed that the IL-1ß levels were markedly reduced in the male FCM group (p = 0.049). Furthermore, the IL-6 levels decreased from baseline in the female FCM group (p = 0.047). The blood sugar, lipid, and safety indices were not different between the experimental groups. FCM can potentially be developed as an immune-boosting supplement without liver, kidney, or blood component toxicity.


Assuntos
Cordyceps , Adulto , Humanos , Masculino , Feminino , Cordyceps/química , Desoxiadenosinas/farmacologia , Adenosina/metabolismo , Adjuvantes Imunológicos/farmacologia , Fígado , Imunidade
12.
Molecules ; 29(7)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38611942

RESUMO

OBJECTIVE: To compare the effect of fermentation on the chemical constituents of Gastrodia Tuder Halimasch Powder (GTHP), to establish its fingerprinting and multicomponent content determination, and to provide a basis for the processing, handling, and clinical application of this herb. METHODS: Ultra-high-performance liquid chromatography-quadrupole-Orbitrap high-resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS) was used to conduct a preliminary analysis of the chemical constituents in GTHP before and after fermentation. High-performance liquid chromatography (HPLC) was used to determine some major differential components of GTHP and establish fingerprints. Cluster analysis (CA), and principal component analysis (PCA) were employed for comprehensive evaluation. RESULTS: Seventy-nine compounds were identified, including flavonoids, organic acids, nucleosides, terpenoids, and others. The CA and PCA results showed that ten samples were divided into three groups. Through standard control and HPLC analysis, 10 compounds were identified from 22 peaks, namely uracil, guanosine, adenosine, 5-hydroxymethylfurfural (5-HMF), daidzin, genistin, glycitein, daidzein, genistein, and ergosterol. After fermentation, GTHP exhibited significantly higher contents of uracil, guanosine, adenosine, 5-hydroxymethylfurfural, and ergosterol and significantly lower genistein and daidzein contents. CONCLUSIONS: The UHPLC-Q-Orbitrap HRMS and HPLC methods can effectively identify a variety of chemical components before and after the fermentation of GTHP. This study provides a valuable reference for further research on the rational clinical application and quality control improvement of GTHP.


Assuntos
Furaldeído/análogos & derivados , Gastrodia , Genisteína , Cromatografia Líquida de Alta Pressão , Fermentação , Pós , Adenosina , Ergosterol , Guanosina , Uracila
13.
Biosens Bioelectron ; 256: 116276, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38599073

RESUMO

Fat mass and obesity-associated protein (FTO) has gained attention as the first RNA N6-methyladenosine (m6A) modification eraser due to its overexpression being associated with various cancers. In this study, an electrochemiluminescence (ECL) biosensor for the detection of demethylase FTO was developed based on DNAzyme-mediated CRISPR/Cas12a signal cascade amplification system and carboxylated carbon nitride nanosheets/phosphorus-doped nitrogen-vacancy modified carbon nitride nanosheets (C-CN/PCNV) heterojunction as the emitter. The biosensor was constructed by modifying the C-CN/PCNV heterojunction and a ferrocene-tagged probe (ssDNA-Fc) on a glassy carbon electrode. The presence of FTO removes the m6A modification on the catalytic core of DNAzyme, restoring its cleavage activity and generating activator DNA. This activator DNA further activates the trans-cleavage ability of Cas12a, leading to the cleavage of the ssDNA-Fc and the recovery of the ECL signal. The C-CN/PCNV heterojunction prevents electrode passivation and improves the electron-hole recombination, resulting in significantly enhanced ECL signal. The biosensor demonstrates high sensitivity with a low detection limit of 0.63 pM in the range from 1.0 pM to 100 nM. Furthermore, the biosensor was successfully applied to detect FTO in cancer cell lysate and screen FTO inhibitors, showing great potential in early clinical diagnosis and drug discovery.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato , Técnicas Biossensoriais , Sistemas CRISPR-Cas , DNA Catalítico , Técnicas Eletroquímicas , Limite de Detecção , Medições Luminescentes , Metalocenos , Dioxigenase FTO Dependente de alfa-Cetoglutarato/química , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Humanos , DNA Catalítico/química , Técnicas Eletroquímicas/métodos , Nitrilas/química , Endodesoxirribonucleases/química , Endodesoxirribonucleases/metabolismo , Proteínas Associadas a CRISPR/química , Adenosina/análogos & derivados , Adenosina/análise , Adenosina/química , Nanoestruturas/química , Compostos Ferrosos/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética
14.
J Exp Clin Cancer Res ; 43(1): 111, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605400

RESUMO

BACKGROUND: The regulatory role of N6-methyladenosine (m6A) modification in the onset and progression of cancer has garnered increasing attention in recent years. However, the specific role of m6A modification in pulmonary metastasis of colorectal cancer remains unclear. METHODS: This study identified differential m6A gene expression between primary colorectal cancer and its pulmonary metastases using transcriptome sequencing and immunohistochemistry. We investigated the biological function of METTL3 gene both in vitro and in vivo using assays such as CCK-8, colony formation, wound healing, EDU, transwell, and apoptosis, along with a BALB/c nude mouse model. The regulatory mechanisms of METTL3 in colorectal cancer pulmonary metastasis were studied using methods like methylated RNA immunoprecipitation quantitative reverse transcription PCR, RNA stability analysis, luciferase reporter gene assay, Enzyme-Linked Immunosorbent Assay, and quantitative reverse transcription PCR. RESULTS: The study revealed high expression of METTL3 and YTHDF1 in the tumors of patients with pulmonary metastasis of colorectal cancer. METTL3 promotes epithelial-mesenchymal transition in colorectal cancer by m6A modification of SNAIL mRNA, where SNAIL enhances the secretion of CXCL2 through the NF-κB pathway. Additionally, colorectal cancer cells expressing METTL3 recruit M2-type macrophages by secreting CXCL2. CONCLUSION: METTL3 facilitates pulmonary metastasis of colorectal cancer by targeting the m6A-Snail-CXCL2 axis to recruit M2-type immunosuppressive macrophages. This finding offers new research directions and potential therapeutic targets for colorectal cancer treatment.


Assuntos
Neoplasias Colorretais , Neoplasias Pulmonares , Animais , Camundongos , Humanos , Neoplasias Pulmonares/genética , Adenina , Adenosina , Neoplasias Colorretais/genética , Quimiocina CXCL2 , Metiltransferases/genética
15.
Yi Chuan ; 46(3): 209-218, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38632099

RESUMO

Long interspersed elements-1(LINE-1) is the only autonomous transposon in human genome,and its retrotransposition results in change of cellular genome structure and function, leading occurrence of various severe diseases. As a central key intermediated component during life cycle of LINE-1 retrotransposition, the host modification of LINE-1 mRNA affects the LINE-1 transposition directly. N6-adenosine methylation(m6A), the most abundant epigenetic modification on eukaryotic RNA, is dynamically reversible. m6A modification is also found on LINE-1 mRNA, and it participants regulation of the whole LINE-1 replication cycle, with affecting LINE-1 retrotransposition as well as its adjacent genes expression, followed by influencing genomic stability, cellular self-renewal, and differentiation potential, which plays important roles in human development and diseases. In this review, we summarize the research progress in LINE-1 m6A modification, including its modification positions, patterns and related mechanisms, hoping to provide a new sight on the mechanism research and treatment of related diseases.


Assuntos
Adenosina/análogos & derivados , Genoma Humano , RNA , Humanos , Metilação , RNA/metabolismo , RNA Mensageiro/genética
16.
Cell Biochem Funct ; 42(3): e4010, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38613217

RESUMO

Mesenchymal stromal cells (MSCs) together with malignant cells present in the tumor microenvironment (TME), participate in the suppression of the antitumor immune response through the production of immunosuppressive factors, such as transforming growth factor beta 1 (TGF-ß1). In previous studies, we reported that adenosine (Ado), generated by the adenosinergic activity of cervical cancer (CeCa) cells, induces the production of TGF-ß1 by interacting with A2AR/A2BR. In the present study, we provide evidence that Ado induces the production of TGF-ß1 in MSCs derived from CeCa tumors (CeCa-MSCs) by interacting with both receptors and that TGF-ß1 acts in an autocrine manner to induce the expression of programmed death ligand 1 (PD-L1) in CeCa-MSCs, resulting in an increase in their immunosuppressive capacity on activated CD8+ T lymphocytes. The addition of the antagonists ZM241385 and MRS1754, specific for A2AR and A2BR, respectively, or SB-505124, a selective TGF-ß1 receptor inhibitor, in CeCa-MSC cultures significantly inhibited the expression of PD-L1. Compared with CeCa-MSCs, MSCs derived from normal cervical tissue (NCx-MSCs), used as a control and induced with Ado to express PD-L1, showed a lower response to TGF-ß1 to increase PD-L1 expression. Those results strongly suggest the presence of a feedback mechanism among the adenosinergic pathway, the production of TGF-ß1, and the induction of PD-L1 in CeCa-MSCs to suppress the antitumor response of CD8+ T lymphocytes. The findings of this study suggest that this pathway may have clinical importance as a therapeutic target.


Assuntos
Células-Tronco Mesenquimais , Neoplasias do Colo do Útero , Feminino , Humanos , Antígeno B7-H1 , Adenosina/farmacologia , Fator de Crescimento Transformador beta1 , Microambiente Tumoral
17.
J Neuroimmune Pharmacol ; 19(1): 13, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613591

RESUMO

The occurrence of major asthma symptoms is largely attributed to airway vagal hypertonia, of which the central mechanisms remain unclear. This study tests the hypotheses that endothelin-1-mediated brainstem glial activation produces asthmatic airway vagal hypertonia via enhanced action of adenosine 5'-triphosphate on neuronal purinergic P2X4 receptors. A rat model of asthma was prepared using ovalbumin. Airway vagal tone was evaluated by the recurrent laryngeal discharge and plethysmographic measurement of pulmonary function. The changes in the brainstem were examined using ELISA, Western blot, luciferin-luciferase, quantitative reverse transcription-polymerase chain reaction, enzyme activity assay and immunofluorescent staining, respectively. The results showed that in the medulla of rats, endothelin receptor type B and P2X4 receptors were primarily expressed in astrocytes and neurons, respectively, and both of which, along with endothelin-1 content, were significantly increased after ovalbumin sensitization. Ovalbumin sensitization significantly increased recurrent laryngeal discharge, which was blocked by acute intracisternal injection of P2X4 receptor antagonist 5-BDBD, knockdown of brainstem P2X4 receptors, and chronic intraperitoneal injection of endothelin receptor type B antagonist BQ788, respectively. Ovalbumin sensitization activated microglia and astrocytes and significantly decreased ecto-5'-nucleotidase activity in the medulla, and all of which, together with the increase of medullary P2X4 receptor expression and decrease of pulmonary function, were reversed by chronic BQ788 treatment. These results demonstrated that in rats, allergic airway challenge activates both microglia and astrocytes in the medulla via enhanced endothelin-1/endothelin receptor type B signaling, which subsequently causes airway vagal hypertonia via augmented adenosine 5'-triphosphate/P2X4 receptor signaling in central neurons of airway vagal reflex.


Assuntos
Asma , Polifosfatos , Receptores Purinérgicos P2X4 , Ratos , Animais , Ratos Sprague-Dawley , Endotelina-1 , Ovalbumina/toxicidade , Asma/induzido quimicamente , Tronco Encefálico , Hipertonia Muscular , Trifosfato de Adenosina , Receptores de Endotelina , Adenosina
18.
Bioorg Med Chem ; 104: 117700, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38583236

RESUMO

Adenosine Deaminases Acting on RNA (ADARs) catalyze the deamination of adenosine to inosine in double-stranded RNA (dsRNA). ADARs' ability to recognize and edit dsRNA is dependent on local sequence context surrounding the edited adenosine and the length of the duplex. A deeper understanding of how editing efficiency is affected by mismatches, loops, and bulges around the editing site would aid in the development of therapeutic gRNAs for ADAR-mediated site-directed RNA editing (SDRE). Here, a SELEX (systematic evolution of ligands by exponential enrichment) approach was employed to identify dsRNA substrates that bind to the deaminase domain of human ADAR2 (hADAR2d) with high affinity. A library of single-stranded RNAs was hybridized with a fixed-sequence target strand containing the nucleoside analog 8-azanebularine that mimics the adenosine deamination transition state. The presence of this nucleoside analog in the library biased the screen to identify hit sequences compatible with adenosine deamination at the site of 8-azanebularine modification. SELEX also identified non-duplex structural elements that supported editing at the target site while inhibiting editing at bystander sites.


Assuntos
Adenosina Desaminase , Nucleosídeos de Purina , Ribonucleosídeos , Humanos , Adenosina , Adenosina Desaminase/metabolismo , Sequência de Bases , RNA de Cadeia Dupla , RNA Guia de Sistemas CRISPR-Cas
19.
Proc Natl Acad Sci U S A ; 121(16): e2401313121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38602916

RESUMO

All forms of life are presumed to synthesize arginine from citrulline via a two-step pathway consisting of argininosuccinate synthetase and argininosuccinate lyase using citrulline, adenosine 5'-triphosphate (ATP), and aspartate as substrates. Conversion of arginine to citrulline predominantly proceeds via hydrolysis. Here, from the hyperthermophilic archaeon Thermococcus kodakarensis, we identified an enzyme which we designate "arginine synthetase". In arginine synthesis, the enzyme converts citrulline, ATP, and free ammonia to arginine, adenosine 5'-diphosphate (ADP), and phosphate. In the reverse direction, arginine synthetase conserves the energy of arginine deimination and generates ATP from ADP and phosphate while releasing ammonia. The equilibrium constant of this reaction at pH 7.0 is [Cit][ATP][NH3]/[Arg][ADP][Pi] = 10.1 ± 0.7 at 80 °C, corresponding to a ΔG°' of -6.8 ± 0.2 kJ mol-1. Growth of the gene disruption strain was compared to the host strain in medium composed of amino acids. The results suggested that arginine synthetase is necessary in providing ornithine, the precursor for proline biosynthesis, as well as in generating ATP. Growth in medium supplemented with citrulline indicated that arginine synthetase can function in the direction of arginine synthesis. The enzyme is widespread in nature, including bacteria and eukaryotes, and catalyzes a long-overlooked energy-conserving reaction in microbial amino acid metabolism. Along with ornithine transcarbamoylase and carbamate kinase, the pathway identified here is designated the arginine synthetase pathway.


Assuntos
Arginina , Ligases , Arginina/metabolismo , Citrulina/metabolismo , Amônia , Ornitina/genética , Trifosfato de Adenosina/metabolismo , Fosfatos , Adenosina , Catálise
20.
Anal Chim Acta ; 1303: 342532, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38609270

RESUMO

N6-methyladenosine (m6A) is one of the most abundant chemical modifications in RNA and has vital significance in cellular processes and tumor development. However, the accurate analysis of site-specific m6A modification remains a challenge. In this work, a MazF endoribonuclease activated rolling circle amplification (MazF-RCA) combined MALDI-TOF MS assay is developed for the detection of site-specific m6A-RNA. MazF endoribonuclease can specifically cleave the ACA motif, leaving methylated (m6A)CA motif intact. The intact methylated RNA can then be amplified through rolling circle amplification, and the generated reporter oligonucleotides are detected by MALDI-TOF MS. The assay exhibits good quantification ability, presenting a wide linear range (100 fM to 10 nM) with the limit-of-detection lower than 100 fM. Additionally, the assay can accurately detect methylated RNA in the presence of large amount of non-methylated RNA with a relative abundance of methylated RNA down to 0.5%. The developed assay was further applied to detect m6A-RNA spiked in MCF-7 cell RNA extracts, with the recovery rates in the range of 90.64-106.93%. The present assay provides a novel platform for the analysis of site-specific m6A-RNA at high specificity and sensitivity, which can promote the study of RNA methylation in clinical and biomedical research.


Assuntos
Adenosina/análogos & derivados , Endorribonucleases , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...